Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Saudi J Biol Sci ; 28(2): 1226-1232, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613051

RESUMO

Some nanoscale morphologies of titanium oxide nanostructures blend with gold nanoparticles and act as satellites and targeted weapon methodologies in biomedical applications. Simultaneously, titanium oxide can play an important role when combined with gold after blending with polyethylene glycol (PEG). Our experimental approach is novel with respect to the plasmonic role of metal nanoparticles as an efficient PDT drug. The current experimental strategy floats the comprehensive and facile way of experimental strategy on the critical influence that titanium with gold nanoparticles used as novel photosensitizing agents after significant biodistribution of proposed nanostructures toward targeted site. In addition, different morphologies of PEG-coated Au-doped titanium nanostructures were shown to provide various therapeutic effects due to a wide range of electromagnetic field development. This confirms a significantly amplified population of hot electron generation adjacent to the interface between Au and TiO2 nanostructures, leading to maximum cancerous cell injury in the MCF-7 cell line. The experimental results were confirmed by applying a least squares fit math model which verified our results with 99% goodness of fit. These results can pave the way for comprehensive rational designs for satisfactory response of performance phototherapeutic model mechanisms along with new horizons of photothermal therapy (HET) and photodynamic therapy (HET) operating under visible and near-infrared (NIR) light.

3.
Saudi J Biol Sci ; 28(2): 1233-1238, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613052

RESUMO

The preparation of a manganese-doped cerium oxide (Mn:CeO2) nanocomposite via hydrothermal route is described. Cubic fluorite structure of single phase was exhibited by studying structural analysis through x-ray diffraction (XRD) technique and morphological analysis was conducted by scanning electron microscope. Surface analytic technique of energy dispersive x-ray spectroscopy (EDX) was conducted to analyze the relative amount of any impurity and doping. Structural changes due to manganese doping such as increment in production of vacancies of oxygen within crystal of cerium oxide, and reduction in size of crystallite and constant of lattice was observed in our research study. Moreover, the Mn:CeO2 nanocomposite demonstrates differential cytotoxicity against MCF-7 adenocarcinoma cell line, which renders it a promising candidate for targeted cancer therapy. The anti-tumorous activity of the cerium oxide nanocomposite was significantly enhanced with doping of manganese, which is directly linked with the generation of highly reactive oxygen facets. The experimental results are supported by a mathematical model that confirms a confidence level of 95%. This research has paved the way for many utilities in therapeutics and magnetic resonance imaging diagnostics through new observations, and hence verified their math model.

5.
Biomed Res Int ; 2019: 7156828, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662993

RESUMO

In this experimental approach, we explored the structures, morphologies, phototoxicities, and antibacterial activities of undoped and Mn-doped ceria nanocomposite materials, Mn x Ce1-x O2. The Mn x Ce1-x O2 nanocomposites were synthesized by employing a soft chemical route. Our prime focus was on the influence of different factors, both physical and chemical, i.e., the concentration of manganese in the product, size of the nanocomposite, drug dose, and incubation time, on the bacterial strains. Different bacterial strains were selected as experimental biological models of the antibacterial activity of the manganese-doped cerium oxide nanocomposite. In addition to the photodynamic response, the adenocarcinoma cell line (MCF-7) was also studied. Based on cell viability losses and bacterial inhibition analyses, the precise mechanisms of apoptosis or necrosis of 5-ALA/PpIX-exposed MCF-7 cells under 630 nm red lights and under dark conditions were elucidated. It was observed that the undoped nanocomposites had lower cytotoxicities and inhibitions compared with those of the doped nanocomposites towards pathogens. The antibacterial activity and effectiveness for photodynamic therapy were enhanced in the presence of the manganese-doped ceria nanocomposite, which could be attributed to the correlation of the maximum reactive oxygen species generation for targeted toxicity and maximum antioxidant property in bacteria growth inhibition. The optimized cell viability dose and doping concentration will be beneficial for treating cancer and bacterial infections in the future.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cério/química , Manganês/química , Nanocompostos/química , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Compostos de Manganês/química , Nanopartículas Metálicas/química , Óxidos/química , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo
6.
Micromachines (Basel) ; 10(1)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658388

RESUMO

The current study is based on Zn/ZnO nanoparticles photodynamic therapy (PDT) mediated effects on healthy liver cells and cancerous cells. The synthesis of Zn/ZnO nanoparticles was accomplished using chemical and hydrothermal methods. The characterization of the synthesized nanoparticles was carried out using manifold techniques (e.g., transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS)). In order to study the biotoxicity of the grown nanoparticles, they were applied individually and in conjunction with the third generation photosensitiser Fotolon (Chlorine e6) in the in vivo model of the normal liver of the Wister rat, and in the in vitro cancerous liver (HepG2) model both in the dark and under a variety of laser exposures (630 nm, Ultraviolet (UV) light). The localization of ZnO nanoparticles was observed by applying fluorescence spectroscopy on a 1 cm² selected area of normal liver, whereas the in vitro cytotoxicity and reactive oxygen species (ROS) detection were carried out by calculating the loss in the cell viability of the hepatocellular model by applying a neutral red assay (NRA). Furthermore, a statistical analysis is carried out and it is ensured that the p value is less than 0.05. Thus, the current study has highlighted the potential for applying Zn/ZnO nanoparticles in photodynamic therapy that would lead to wider medical applications to improve the efficiency of cancer treatment and its biological aspect study.

7.
Sci Rep ; 7: 46603, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436451

RESUMO

Carcinogenesis is a complex molecular process starting with genetic and epigenetic alterations, mutation stimulation, and DNA modification, which leads to proteomic adaptation ending with an uncontrolled proliferation mechanism. The current research focused on the empirical modelling of the physiological response of human melanoma cells (FM55P) and human foreskin fibroblasts cells (AG01518) to the multilayer zinc oxide (ZnO) nanomaterials under UV-A exposure. To validate this experimental scheme, multilayer ZnO nanomaterials were grown on a femtotip silver capillary and conjugated with protoporphyrin IX (PpIX). Furthermore, PpIX-conjugated ZnO nanomaterials grown on the probe were inserted into human melanoma (FM55P) and foreskin fibroblasts cells (AG01518) under UV-A light exposure. Interestingly, significant cell necrosis was observed because of a loss in mitochondrial membrane potential just after insertion of the femtotip tool. Intense reactive oxygen species (ROS) fluorescence was observed after exposure to the ZnO NWs conjugated with PpIX femtotip model under UV exposure. Results were verified by applying several experimental techniques, e.g., ROS detection, MTT assay, and fluorescence spectroscopy. The present work reports experimental modelling of cell necrosis in normal human skin as well as a cancerous tissue. These obtained results pave the way for a more rational strategy for biomedical and clinical applications.


Assuntos
Fibroblastos/metabolismo , Melanoma , Potencial da Membrana Mitocondrial , Nanopartículas , Raios Ultravioleta , Óxido de Zinco , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fibroblastos/patologia , Prepúcio do Pênis , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patologia , Melanoma/terapia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Nanopartículas/química , Nanopartículas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/química , Óxido de Zinco/farmacologia
8.
PLoS One ; 11(3): e0150295, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26990435

RESUMO

Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10-200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65-68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice.


Assuntos
Nanotubos , Níquel/farmacologia , Fotoquimioterapia , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Células HeLa , Humanos , Fármacos Fotossensibilizantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...